

En la búsqueda y diseño de nuevos fármacos con potencial actividad anticancerosa y antiparasitaria: inhibidores de la polimerización de la tubulina¹

Rodrigo Aguayo Ortiz,² Luis Fernando Colorado Pablo, Carlos Daniel Flores León, Efrén Mar Antonio, M. Andrés Velasco Saavedra, Alan Hernández Sánchez, Abril Montserrat Vicente López, Félix Matadamas Martínez, Alicia Hernández Campos

Resumen. Los cambios en el medio ambiente y en nuestra alimentación han aumentado la incidencia de enfermedades como el cáncer y las infecciones parasitarias, caracterizadas por su alta mortalidad y resistencia a los tratamientos convencionales. La tubulina, una proteína clave en la división celular, representa un objetivo terapéutico prometedor para abordar

estos problemas de salud. En este proyecto se emplearon herramientas computacionales para identificar el sitio y el modo de unión de compuestos que interfieren con la polimerización de la tubulina, lo que permitió diseñar nuevos agentes con actividad farmacológica y potencial para desarrollarse como fármacos.

Palabras clave. Tubulina, antiparasitarios, anticancerosos, polimerización, resistencia a fármacos

² Facultad de Química. rodaguayo@comunidad.unam.mx

I Proyecto PAPIIT IA201022: "Búsqueda y diseño de nuevos inhibidores de la polimerización de la tubulina con potencial actividad anticancerígena y antiparasitaria".

Introducción

El aumento en la incidencia de cáncer y la resistencia de parásitos a los fármacos de primera línea ha generado un gran interés en la búsqueda de nuevas opciones farmacológicas para tratar de manera segura y efectiva estas enfermedades. Una de las estrategias utilizadas para desarrollar terapias contra el cáncer y las parasitosis involucra la modulación de la función biológica de proteínas que participan en la división celular, como es el caso de los microtúbulos.

Los microtúbulos son estructuras proteicas dinámicas que desempeñan funciones fundamentales en el mantenimiento celular. Estas incluyen el transporte intracelular de sustancias, la preservación de la forma celular, la organización y posición de los organelos, la motilidad, la migración y la formación del huso mitótico durante la división celular. Estas estructuras están conformadas por subunidades asimétricas de proteínas llamadas α - y β -tubulina, que permiten la formación de polímeros (fig. 1, sección A).

En la actualidad, se han reportado diversos fármacos y moléculas bioactivas que afectan el equilibrio dinámico de la polimerización-despolimerización de los dímeros de $\alpha\beta$ -tubulina. Sin embargo, aún se desconoce el sitio de unión de varios de estos agentes o no se ha comprendido completamente el conjunto de características estructurales necesarias para ejercer la actividad biológica (farmacóforo). Por tanto, es crucial abordar estos aspectos para el desarrollo de nuevos fármacos contra el cáncer y contra las infecciones por parásitos que ofrezcan mayor eficacia y seguridad.

En este proyecto, nuestro grupo de investigación utilizó diversas herramientas computacionales para: 1) identificar el sitio de unión, o lugar específico donde se acopla el inhibidor de la polimerización de los microtúbulos orizalina en el parásito causante de la toxoplasmosis; 2) estudiar el perfil de interacción covalente de ligandos (moléculas que se unen a proteínas) conocidos con este blanco terapéutico, y 3) optimizar la estructura química de los ligandos para favorecer su actividad biológica contra la diana molecular para el tratamiento del cáncer. A continuación, se abordan brevemente los avances de cada uno de estos puntos.

Identificación del sitio de unión de la orizalina en la tubulina de *Toxoplasma gondii*

La orizalina (ORY; fig. 1, sección B) es un herbicida de acción preemergente (es decir, que se aplica antes de que emerja la planta) y de uso extendido que interfiere selectivamente con la tubulina de los microtúbulos de las plantas. Curiosamente, este compuesto también impide la polimerización de la tubulina en parásitos protozoarios causantes de padecimientos como la toxoplasmosis (*Toxoplasma gondii*), la malaria (*Plasmodium falciparum*) y la enfermedad de Chagas (*Trypanosoma cruzi*), mientras que afecta mínimamente a la tubulina de mamíferos. Esta combinación de alta potencia y baja toxicidad lo ha convertido en un compuesto líder para crear nuevos medicamentos antiparasitarios.

En *T. gondii* se han descrito treinta mutaciones de resistencia a ORY distribuidas en 23 aminoácidos de la subunidad de α-tubulina. La mayoría confiere resistencia baja o moderada, pero cuatro de ellas le permiten al parásito sobrevivir a concentraciones muy altas del compuesto. Estos datos, junto con modelos computacionales, han inspirado varias hipótesis sobre el sitio de unión de ORY en la tubulina del protozoario. Sin embargo, las cavidades propuestas por otros grupos de investigación son poco accesibles o contienen residuos muy conservados, lo que no explica por completo los patrones observados de resistencia.

Entre los inhibidores de la polimerización cristalizados con tubulina, solo el agente pironetina (PIR; fig. I, sección A) se acopla al núcleo de la α -tubulina, precisamente en la región donde se acumulan muchas mutaciones de resistencia. Con base en ello, se propuso que ORY comparte el sitio de PIR. Para comprobar nuestra hipótesis, se recopiló la información experimental más reciente sobre la actividad inhibitoria de ORY en plantas y protozoarios. Se modeló su unión en la α -tubulina de T. gondii mediante acoplamiento molecular y se emplearon diferentes protocolos de dinámica molecular para caracterizar el perfil de interacción dinámico proteína-ligando (fig. I, sección C).

Los resultados de este estudio permitieron demostrar que las principales diferencias entre las α-tubulinas de organismos susceptibles y no susceptibles se encuentran en el sitio de unión de PIR. Además, tres de las cuatro mutaciones que confieren resistencia a altas concentraciones de ORY se localizan en este sitio, así como la mutación V202F (reportada en plantas) y cinco de las siete mutaciones asociadas con resistencia moderada. Los estudios de acoplamiento molecular revelaron que las cadenas alifáticas del grupo dipropilamina de ORY interactúan con la cavidad hidrofóbica, mientras que la sulfonamida se orienta

hacia la entrada del sitio de unión. Las simulaciones de dinámica molecular confirmaron la estabilidad del compuesto en el sitio, con pocos cambios conformacionales guiados por los contactos hidrofóbicos de la dipropilamina. Además, se caracterizaron interacciones polares entre el grupo sulfonamida de ORY y moléculas de agua ubicadas en la entrada del sitio de unión. En conjunto, estos resultados sugieren que ORY podría unirse al mismo sitio que PIR en la α -tubulina de T. gondii, lo que aporta información valiosa para el diseño de futuros compuestos antitoxoplasma.³ ⁴

Unión covalente de agentes antifúngicos a la tubulina

Botrytis cinerea, conocido como moho gris, es un hongo patógeno que afecta a cultivos frutales y hortícolas de gran valor económico, como la fresa, uva, pepino y tomate. Bajo condiciones ambientales favorables, puede causar pérdidas de hasta el 50% antes de la cosecha, generando pérdidas globales estimadas entre diez y cien mil millones de dólares anuales. Para su control, se han utilizado diversos fungicidas, entre ellos los bencimidazoles y benzamidas. Uno de los más eficaces ha sido el carbendazim (CBZ; fig. 1, sección B), un bencimidazol de amplio espectro que inhibe la polimerización de microtúbulos al unirse selectivamente a la β-tubulina de B. cinerea, interrumpiendo procesos celulares clave y provocando la muerte celular.

No obstante, el uso prolongado de CBZ ha favorecido la aparición de cepas resistentes. Se han identificado dos principales tipos de resistencia en campo: BenR1 y BenR2. La cepa BenR1 presenta una mutación en el codón 198 (E198A), que reduce la afinidad del CBZ por la β-tubulina al eliminar un puente de hidrógeno crucial. Por su parte, la cepa BenR2, con la mutación F200Y, muestra una resistencia moderada. Inhibidores de la polimerización de tubulina como el diethofencarb (DEF) y la zoxamida (ZOX; fig. 1B) también se han utilizado para el tratamiento de este hongo. DEF ha sido efectivo contra BenR1, pero las

³ Rodrigo Aguayo-Ortiz y Laura Domínguez, "Unveiling the Possible Oryzalin-Binding Site in the α-Tubulin of Toxoplasma Gondii", ACS Omega 7, núm. 22(2022): 18434-42, https://doi.org/10.1021/acsomega.200729.

⁴ Carlos D. Flores-León, Laura Domínguez y Rodrigo Aguayo-Ortiz, "Molecular Basis of Toxoplasma *Gondii* Oryzalin Resistance from a Novel α-Tubulin Binding Site Model", *Archives of Biochemistry and Biophysics* 730 (2022), https://doi.org/10.1016/j.abb.2022.109398.

cepas BenS (sensibles) y BenR2 son naturalmente resistentes. Además, su uso combinado con CBZ ha favorecido la selección de cepas BenR2 en varios países europeos. En China, se detectó una tercera variante resistente (BenR3), con la mutación E198V, que es resistente a CBZ y menos sensible a DEF que BenR1, lo que limita aún más la eficacia de estos agentes en el campo.

Por su parte, zox es una benzamida que se une covalentemente al residuo C239 de la β-tubulina, posiblemente induciendo la degradación del heterodímero tubulina. Zox mantiene su eficacia contra las cepas BenS, BenR1 y BenR3, pero mutaciones como E198K, F200Y y M233I confieren alta resistencia. Estas mutaciones también reducen la sensibilidad a DEF y CBZ. A pesar de esto, la mutación E198K se encuentra con menor frecuencia en campo, y M233I aún no ha sido detectada.

En nuestro proyecto, se empleó un protocolo de acoplamiento molecular covalente para determinar la conformación más confiable de ZOX en la tubulina de B. cinerea. También se predijeron las posiciones de unión de CBZ y DEF, ya que las propuestas anteriores no coinciden con la evidencia experimental actual. Además, se analizaron los perfiles de interacción dinámica de CBZ, DEF y ZOX con el heterodímero de $\alpha\beta$ -tubulina de B. cinerea. Finalmente, se evaluó el impacto de mutaciones resistentes en la afinidad de los fungicidas mediante cálculos alquímicos de energía libre.

Nuestros resultados mostraron que ZOX se une al sitio propuesto e interactúa con residuos del sitio, lo que concuerda con datos experimentales previos y explica su actividad (fig. 1, sección C). El análisis también reveló que ZOX forma un puente de hidrógeno intramolecular con C239, reemplazando al puente de agua comúnmente observado en otros inhibidores de la polimerización de la tubulina. Todos los fungicidas formaron interacciones con el carbonilo principal de V236 o con la cadena lateral de S314, aunque solo CBZ interactuó con E198. Los cálculos de energía libre alquímica confirmaron la alta sensibilidad de los aislados con mutaciones E198A/V a ZOX, y explican el posible mecanismo de resistencia conferido por la mutación E198K. Asimismo, se evidenció que las mutaciones E198A/V/K en β -tubulina interrumpen la interacción con CBZ, lo que justifica su resistencia. En contraste, DEF mostró menor afinidad por la β -tubulina silvestre, atribuible a la presencia de E198 y a la reducción del volumen de la cavidad hidrofóbica. En conjunto, estos hallazgos proporcionan una comprensión más profunda de la base molecular de la unión de fungicidas a la

β-tubulina de *B. cinerea* y de los mecanismos de resistencia, contribuyendo al diseño racional de nuevos compuestos antifúngicos más eficaces.⁵

Optimización estructural de agentes anticancerosos

Los derivados de CBZ son un grupo de fármacos antiparasitarios utilizados en el tratamiento de infecciones helmínticas. La actividad antihelmíntica de amplio espectro y la toxicidad moderada de estos compuestos han favorecido su uso generalizado en humanos y animales. Albendazol (ABZ), fenbendazol (FBZ) y mebendazol (MBZ) son algunos de los derivados más utilizados, y estudios recientes han demostrado su uso potencial como agentes anticancerosos. Estos compuestos inducen arresto del ciclo celular y muerte en diversas líneas celulares humanas de cáncer, inhibiendo la polimerización de la tubulina durante la división celular. Aunque varios estudios han propuesto su reposicionamiento clínico, aún se requieren modificaciones estructurales para mejorar su potencia y perfil de seguridad.

La actividad de los derivados de CBZ sobre la polimerización de tubulina se conoce desde los años setenta. Sin embargo, no fue hasta finales de 2015 que uno de estos compuestos, nocodazol (NZ), fue cocristalizado en complejo con β-tubulina y depositado en la base de datos *Protein Data Bank* (PDB), una base de datos internacional que almacena información tridimensional de biomoléculas obtenida principalmente por cristalografía de rayos X y resonancia magnética nuclear. NZ, al igual que otros derivados de CBZ, es un potente inhibidor de la polimerización de microtúbulos utilizado para estudiar su estructura y estabilidad. Su estructura cristalográfica reveló una superposición entre los sitios de unión del bencimidazol y la colchicina (COL; fig. I, sección A). Esta proximidad ha permitido el diseño racional de compuestos capaces de ocupar ambos sitios para potenciar su actividad anticancerosa.

Recientemente, se identificó un nuevo derivado bencimidazólico que presenta actividad antiproliferativa contra líneas celulares de cáncer cervicouterino. Su estructura cristalográfica confirmó la unión al sitio de los bencimidazoles en

⁵ M. Andrés Velasco-Saavedra, Efrén Mar-Antonio y Rodrigo Aguayo-Ortiz, "Molecular Insights into the Covalent Binding of Zoxamide to the β-Tubulin of Botrytis Cinerea", *Journal of Chemical Information and Modeling* 63, núm. 20(2023): 6386-95, https://doi.org/10.1021/acs.jcim.3coo911.

la tubulina, formando puentes de hidrógeno con el carbonilo de V236 y la cadena lateral de E198. Un derivado de CBZ con una estructura química muy similar había sido evaluado años atrás (C2; fig. 1, secciones B y C), mostrando potente actividad antiproliferativa frente a líneas celulares de pulmón y colon.

En este estudio, empleamos cálculos de energía libre alquímica para evaluar el impacto de modificar la estructura de estos compuestos en la actividad antiproliferativa. Las moléculas con mayor afinidad predicha fueron sintetizadas y evaluadas en líneas celulares de cáncer de pulmón y colon. Además, se confirmó su efecto sobre la polimerización de tubulina mediante un kit comercial y se realizaron simulaciones de dinámica molecular para estudiar el perfil de interacción y estabilidad del derivado más prometedor en la β -tubulina.

Los resultados mostraron que ciertas sustituciones, como la incorporación de átomos de cloro en posiciones específicas, aumentaron la afinidad, mientras que otras tuvieron efectos marginales. Los reemplazos bioisostéricos con grupos naftilo mostraron resultados mixtos: la sustitución con anillo α-naftilo incrementó la afinidad, mientras que la sustitución con anillo β-naftilo provocó una disminución significativa. Este análisis proporcionó información clave para la ruta de optimización, destacando la relevancia del compuesto 5a (fig. 1, sección B). De los siete compuestos sintetizados, el compuesto 5a presentó la mayor actividad antiproliferativa frente a líneas celulares de cáncer de pulmón (SK-LU-1) y colorrectal (SW620), siendo comparable en potencia a NZ. De forma interesante, el compuesto 5a mostró una eficiencia lipofilica (LipE) similar a la de мвz y fвz, a pesar de su baja solubilidad en agua. La microscopía reveló que el compuesto 5a inducía alteraciones morfológicas asociadas al arresto y catástrofe mitóticos. Por su parte, las simulaciones de dinámica molecular mostraron que 5a presentó un perfil de interacción diferente con la β-tubulina respecto a otros derivados de bencimidazol, lo que sugirió que el tamaño del grupo naftilo afecta su capacidad para mantener interacciones estables. En conjunto, esta investigación proporciona información valiosa para el desarrollo de nuevos compuestos con mayor actividad anticancerosa. Se requiere una exploración adicional de diferentes regiones del sitio de unión en la tubulina para aumentar la afinidad de los derivados de CBZ por la β-tubulina.⁶

⁶ Lucía Cano-González, Johan D. Espinosa-Mendoza, Félix Matadamas-Martínez, Ariana Romero-Velásquez, Miguel Flores-Ramos, Luis Fernando Colorado-Pablo, Marco Antonio Cerbón-Cervantes, Rafael Castillo, Ignacio González-Sánchez, Lilián Yépez-Mulia, Alicia Her-

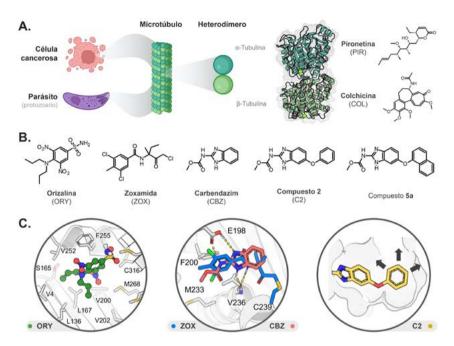


Figura 1. (A) Representación esquemática de los microtúbulos y sus subunidades heterodiméricas de $\alpha\beta$ -tubulina en células cancerosas y protozoarios. En el extremo derecho se muestra la estructura química de dos conocidos agentes inhibidores de la polimerización. (B) Estructura química de los compuestos estudiados en este proyecto. (C) Representación del modo de unión en la tubulina de T.gondii (izquierda), B.cinerea (medio) y mamífero (derecha), de los compuestos de estudio. Las imágenes de los incisos (A) y (B) fueron generadas con Biorender.com, Pymol y acd/ChemSketch, mientras que las del inciso (C) fueron tomadas y modificadas a partir de distintas fuentes.

nández-Campos y Rodrigo Aguayo-Ortiz, "Structure-Based Optimization of Carbendazim-Derived Tubulin Polymerization Inhibitors through Alchemical Free Energy Calculations", *Journal of Chemical Information and Modeling* 63, núm. 22(2023): 7228-38., https://doi.org/10.1021/acs.jcim.3c01379.

Rodrigo Aguayo-Ortiz y Laura Domínguez, "Unveiling the Possible Oryzalin-Binding Site in the α-Tubulin of Toxoplasma Gondii", ACS Omega 7, núm. 22 (2022): 18434-42, https://doi.org/10.1021/acsomega.2c00729; M. Andrés Velasco-Saavedra, Efrén Mar-Antonio y Rodrigo Aguayo-Ortiz, "Molecular Insights into the Covalent Binding of Zoxamide to the β-Tubulin of Botrytis Cinerea", Journal of Chemical Information and Modeling 63, núm. 20(2023): 6386-95, https://doi.org/10.1021/acs.jcim.3c00911; Lucia Cano-González et al., "Structure-Based Optimization of Carbendazim-Derived Tubulin Polymerization Inhibitors through Alchemical Free Energy Calculations", Journal of Chemical Information and Modeling 63, núm. 22(2023): 7228-38, https://doi.org/10.1021/acs.jcim.3c01379.

Perspectivas futuras para el diseño de nuevos agentes anticancerosos y antiparasitarios

A lo largo de este proyecto, hemos avanzado significativamente en la comprensión estructural y funcional de la interacción entre diferentes agentes inhibidores de la polimerización de la tubulina con los microtúbulos de diversos organismos, incluyendo *T. gondii, B. cinerea* y células humanas cancerosas. Nuestros estudios han combinado técnicas computacionales avanzadas (acoplamiento molecular, dinámica molecular y cálculos de energía libre alquímica) con ensayos biológicos, permitiendo delinear los mecanismos moleculares que subyacen a la actividad y resistencia frente a compuestos empleados actualmente en el mercado. Los hallazgos obtenidos revelan la importancia de comprender a nivel molecular cómo estos compuestos interactúan con sus blancos terapéuticos.

En conjunto, este trabajo establece una base sólida para el diseño de nuevos agentes y fármacos antiparasitarios y anticancerosos, con el potencial de superar resistencias y mejorar la eficacia terapéutica en múltiples contextos biológicos.